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Abstract – Class imbalance is a case in which the proportion of training data between one class 

and another is not balanced, the larger data are called “major class”, conversely known as the 

“minor class”. It is believed that accuracy of data mining algorithms can be affected by an 

imbalance problem. Nowadays, researchers distinguish three main factors of class imbalance that 

affect the accuracy of data mining algorithm such as overlap, small disjuncts and outliers. A 

general solution to the problem is the modification of data level or algorithm level. To overcome 

imbalance problems, we propose a new algorithm called RANDSHUFF(Random Shuffle 

Oversampling Techniques for Qualitative Data), oversampling synthetic data generation for 

qualitative data type. RANDSHUFF algorithm uses the concept of neighborhood with IVDM 

(Interpolated Value Difference Metric) distance calculation and crossovers of the original 

attribute values and their neighbor’s attribute values using the random shuffle technique. Our 

experimental results showed that RANDSHUFF, combined with Borderline and ADASYN 

concepts, provides the best results against seven imbalanced public qualitative data type (best 

minor class Recall on hepatitis, breast cancer and German data and best F-Measure of minor 

class on hepatitis, abalone and German data). Copyright © 2016 Praise Worthy Prize S.r.l. - All 

rights reserved. 
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Nomenclature 

k The initial number of  nearest 

neighbors 

Syn New synthetic data 

gap Random number between 0 and 1 

diff Difference between one nearest 

neighbor and original data 

 The interval width w of attribute a 

value 

 Maximum value of attribute a 

 Minimum value of attribute a 

 The discretized value of a 

continuous value x for attribute a 

s Integer value for binning continues 

values into s equal-width intervals 

 Probability class c for given input 

value x on attribute a 

 Probability class c for given input 

value y on attribute a 

 Value difference metric for attribute 

a between x value and y value 

c Class c 

P (ai|bi) Posterior probabilities of a given b 

values 

 Frequency of value x for attribute a 

and class c from training data 

 Frequency of value x for attribute a 

from training data 

 Frequency of value y for attribute a 

and class c from training data 

 Frequency of value y for attribute a 

from training data 

 The offspring of data x for attribute 

I to chromosome length 

 Recall value for minor class 

Precision  Precision value for minor class 

 F-Measure value for minor class 

TP True Positive, major class data 

which correct predict to major class 

TN True Negative, minor class data 

which correct predict to minor class 

FN False Negative, major class data 

which fail predict to minor class 

FP False Positive, minor class data 

which fail predict to major class 

β Harmonization value of Recall and 

Precision 

I. Introduction 

Class imbalance is a case in which the proportion of 

training data between one class and another is not 

balanced (significant skewed class distribution), the class 

with a larger amount of training data is called “major 

class”, conversely known as the “minor class”. Usually, 

the imbalance ratio between “minor class” and “major 



 

Tora Fahrudin, Joko Lianto Buliali, Chastine Fatichah 

Copyright © 2016 Praise Worthy Prize S.r.l. - All rights reserved                               International Review on Computers and Software, Vol. 11, N. 12 

1094 

class” is about 0.0001-30%. It is believed that accuracy 

of data mining algorithms can be affected by imbalance 

problems, which are mostly biased towards “major class” 

[1][2]. The amount of "minor class" data in imbalance 

cases are relatively rare compared with normal cases, 

such as phone fraud, banks fraud, a rare disease in 

medicine, network intrusion, detection of oil spills from 

satellite images and so on [3]. 

Nowadays, researchers distinguish three main factors 

of class imbalance problems that affect the accuracy of 

data mining algorithms such as overlap, small disjuncts 

and outliers[3]. A general solution to overcome 

imbalance problems is the modification of data (data 

level)or the adaptation algorithm (algorithm 

level)[4][5].Compared to the adaptation algorithm, using 

the modification of data solution provides the advantages 

of using an independent classifier[6]. Between the two 

solutions, modification of data more widely studied than 

the adaptation algorithm[3]. 

Modification of data is generally divided into two 

techniques: oversampling and under sampling[7].The 

most well-known oversampling with additional data 

synthetic techniques is SMOTE (Synthetic Minority 

Oversampling Technique)[8]. Although SMOTE can be 

used to generate synthetic data with qualitative type, but 

it was basically developed for quantitative data, as seen 

in the experiments. For this reason, the focus is the 

development of RANDSHUFF, a new variant of SMOTE 

to overcome imbalance problems in the qualitative data 

domain. 

RANDSHUFF uses the neighborhood distance 

computation using the IVDM technique (Interpolated 

Value Difference Metric), which, according to [9], 

provides the best results for qualitative dominant data 

types. While for generating new values for synthetic data 

based on a crossover method of the original attribute 

values and their neighbor's attribute values the random 

shuffle technique is used. 

RANDSHUFF uses boundary distance and boundary 

attributes to guarantee the distance of new synthetic data 

not more than  from its original distance. The success of 

Borderline and ADASYN concepts in generating 

synthetic data only on specific area was also used to 

improve accuracy. 

The remainder of this paper is organized as follows: 

Section 2 explains the related work or literature about 

oversampling with synthetic data, distance function and 

cross over concepts. Section 3 describes the proposed 

algorithm. Section 4 shows the about experimental 

setting and results from 7 public data with qualitative 

dominant data type and discussions. Finally, section 5 

provides conclusion and the possible future work. 

II. Related Work 

II.1. Oversampling and Synthetic Data 

Oversampling increases the amount of "minor class" 

training data, while under sampling is reduces the 

amount of "major class" training data. Based on the 

sampling ratio of each original data and the presence of 

synthetic data, the oversampling method was split in 2 

parts: 

1) Based on the sampling ratio of each original data 

 Same ratio oversampling: increases minor class 

training data by copying each minor class data 

with the same ratio until achieving balance 

distribution. 

 Random oversampling: increases minor class 

training data by using sampling with random 

replacement. 

2) Presence of synthetic data 

 Without synthetic data: increases minor 

classtraining data by oversampling original data 

only. 

 With additional synthetic data: increases minor 

classtraining data by adding additional synthetic 

data. 

In this study, the oversampling was chosen because 

under sampling may cause loss of potential data [10]. In 

the case of oversampling by using a copy of the original 

data, the minority class decision region becomes very 

specific, and will cause over fitting [11], and may cause a 

"lack of data" problem [12][13], that is the background of 

the emergence of creating a synthetic data idea, which is 

believed to overcome the lack of "information" problem 

on the training data. A synthetic data technique in 

oversampling was popularized by Chawla, et al in 

SMOTE. The two core concepts of SMOTE can be 

explained as follows: 

1) A method to find k-nearest neighbors 

2) A method to generate synthetic data based on one of 

the k-nearest neighbors and on the original data 

 Quantitative (Quan):compute diff and gap. The 

new synthetic value will be determined by 

formula (1): 

 

 (1) 

 

 Qualitative (Qual):the new synthetic value will be 

determined by the majority vote of the feature 

vectors from its k-nearest neighbors. 

Some domains of the SMOTE are: 

1) Combination with other available methods (Hybrid 

Method) such as: 

 Ensemble: Boosting (SMOTEBoost) [14], 

Bagging (SMOTEBagging) [15], Random 

Subspace (RSM+SMOTE) [16]. 

 Under sampling: Rough Set (SMOTE-RSB) [17], 

Editing Nearest Neighbor (SMOTE+ENN) [18], 

Tomek Link (SMOTE+TomekLink) [18], 

Wilson’s Editing (SMOTE+WE) [19] 

 Clustering: Density Based (DBSMOTE) [20] 

2) Combination with area selection methods of synthetic 

data generation process (safe area or unsafe area).Safe 

area means the location of data in an homogeneous 

area. Meanwhile unsafe area means the location of 

data in heterogeneous area. The unsafe area was 



 

Tora Fahrudin, Joko Lianto Buliali, Chastine Fatichah 

Copyright © 2016 Praise Worthy Prize S.r.l. - All rights reserved                               International Review on Computers and Software, Vol. 11, N. 12 

1095 

divided into 2 area, borderline and noise [21]. The 

development of SMOTE using selection methods 

proceeds as follows: 

 Generation process was done either in safe or 

unsafe area: Random SMOTE [5]. 

 Generation process was done only in safe area: 

Safe-Level-SMOTE [22]. 

 Generation process was done only in borderline 

area (location of the data is in the border area 

between major class and minor class): SMOTE 

Borderline [23]. 

 Generation process was done in borderline and 

noise area: ADASYN [24]. 

To the best of the author’s knowledge, many studies 

of oversampling with additional synthetic data focused 

on the quantitative data type. Table I provides the 

number of unique datasets used in each algorithm based 

on the amount of their quantitative and qualitative 

attributes. 
 

TABLE I 

LITERATURE METHOD OF OVERSAMPLING WITH DATA SYNTHETIC 

Algorithm Quan Qual Quan+Qual Source 

SMOTE [11] 

Random-SMOTE [5] 

SMOTEBoost[14] 

 

SMOTE-RSB [17] 

SMOTE+(ENN/Tomek 

Link) [18] 

SMOTE Borderline [23] 

ADASYN [24] 

Safe-Level-SMOTE 

[22] 

Databoost-IM [25] 

8 

7 

3 

 

7 

10 

 

4 

3 

2 

10 

0 

0 

0 

 

0 

2 

 

0 

0 

0 

3 

1 

3 

1 

 

2 

3 

 

0 

2 

0 

4 

UCI, et al 

UCI 

UCI, KDD 

Cup 

UCI 

UCI 

 

UCI 

UCI 

UCI 

UCI 

 

Databoost-IM is one variant of oversampling with 

synthetic data algorithm which was developed by Guo, et 

al. The algorithm has two main concepts that synthetic 

data generation and Class frequency balancing[25]. A 

synthetic data generation concept of Databoost-IM 

scrambles value for each attribute in the original training 

data independently (to keep synthetic data distribution 

equal to the original data distribution).  

The new synthetic training data retains the original 

distribution both for nominal and continuous data[25]. 

II.2. Distance Function for Qualitative Data 

In accordance with the above explanation, SMOTE 

uses two core concepts, finding the nearest neighbors 

using k-NN with a certain distance function and 

generating new synthetic data. Associated with the 

distance function, study [9]showed that IVDM had the 

best performance in computing the distance for data 

dominated by qualitative attributes. 

IVDM uses the statistical probability [9]. IVDM 

requires a non-parametric probability density estimation 

to produce  value[26]. Handling of qualitative and 

quantitative attributes at IVDM method can be explained 

as follows: 

1) Quantitative: Discretized into s equal-width interval 

 

 (2) 

 

 (3) 

 

2) Qualitative: compute  and  

 

 (4) 

 

 (5) 

II.3. Cross Over in Genetic Algorithm 

The crossovers method applied to a Genetic Algorithm 

was “a fundamental mechanism of genetic re-

arrangement for both real organisms and genetic 

algorithms” [27]. That method provides a space solution 

by combining strings [27]. The principle of the 

crossovers is to exchange bits chromosomes in a pair and 

combines them to produce a new individual. This 

exchange involves a certain probability value ( , the 

determination of the probability value is one of the keys 

to the success of the genetic algorithm[28].  

Figure 1 shows a simple illustration of cross over. 
 

 
 

Fig. 1. Cross over simple Illustration 

 

Based on[29], cross over methods can be divided into 

4 types: 

1) Single point cross over 

 The crossover was done based on a random number 

from k = 1 to the length of chromosomes. The new 

individual is formed from k=1 to random numbers 

from parent1 chromosomes, and the rest of 

chromosomes from the random number to the length 

of chromosomes from parent2. 
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2) Two-point cross over 

 There are two random numbers, rand1 and rand2, 

where rand1 <rand2. New individual chromosomes 

formed by taking k = 1 to rand1 and rand2 to length 

of chromosomes from parent1, and k = rand1 until 

rand2 of chromosomes from parent2. 

3) Uniform cross over / Discrete crossover 

 Chromosomes with a value <  taken from its first 

parent and conversely taken from second parent. 

4) Flat cross over 

 For  and 

 also random value 

New individual is computed with this 

formula: 

 

 (6) 

III. The Proposed Algorithm 

Inspired by the success of SMOTE in oversampling 

with additional synthetic data and also IVDM’s method 

to find the k-nearest neighbors dominated by qualitative 

data type, a RANDSHUFF algorithm was develop, an 

oversampling technique with synthetic data generation 

for qualitative data type. 

RANDSHUFF also considers three main issues that 

are common in case of imbalance such as overlap, small 

disjuncts and outliers [3] (which are shown in Figures 2). 

 

 
                  (a)                                     (b)                                  (c) 

 

Figs. 2. Illustration of overlap (a), small disjuncts (b), outlier (c) 

 

RANDSHUFF algorithm was developed with 

Who_NearestNeighbors and Is_Keep_Correlated 

parameters input to overcome overlap issue and also to 

combine with Borderline and ADASYN concepts to 

overcome small disjuncts and outlier issues. 

Overall, RANDSHUFF algorithm requires 6 input 

parameters: training data (D), the number of neighbors 

(k), the choice of neighborhoods that will be used as the 

basis to generate synthetic data 

(Who_NearestNeighbors), while keeping correlated 

attribute (IKA), the number of attributes (A), and the 

order of attribute for label class (A_Class). 

Figure 3 illustrates how Who_NearestNeighbors 

parameter works. For k = 5, at the initial stage, the 

determination of one neighbor is randomly selected from 

the k-nearest neighbor based on smaller average of 

IVDM between k-nearest neighbors from "major class" 

andk-nearest neighbors from "minor class". 

After an average IVDM distance value was obtained 

for both classes, the smaller value will be selected as a 

basis random point to generate synthetic data. 

Algorithm RANDSHUFFOversampling 

1. Input: D (Original Training Set), k (Number of Nearest Neighbors), 

2. Who_NearestNeighbors (Average_on_MajorMinor / Minor_Only), 

3. IKA(Is Keep Correlated Attributes True/False),  

4. A (Number of Attributes), A_Class (Attributes Class Order) 

5. Output : DS (Original Training + Synthetic Data Set) 

6. Process : 

7. Nmaj = Count of Major Data on Training Set 

8. Nmin = Count of Minor Data on Training Set 

9.      N       = Count of Training Set 

10. Ratio = (Nmaj/Nmin) – 1 

11. Arr_Dt[][] = Array of Original Training Set D 

12. Arr_Syn[][] = Array of Synthetic Data 

13. Arr_Corr_Atr[] = Array of Correlated Attributes 

14. Read_data(D) to Arr_Dt[][] 

15. Copy data from Arr_Dt[][] to Arr_Syn[][] 

16. if IKA = true then 

17. find correlated attributes 

18.  save correlated attributes index to  Arr_Corr_Atr[] 

19. end if 

20. SI = N+1 (Synthetic Index) /*initialize index for synthetic data */ 

21. for i=1 to N do 

22.  if Arr_Dt[i][] = Minor Class then 

23. ifWho_NearestNeighbors= Average_on_MajorMinorthen 

24. find knn_major data and compute average of distance for i 

25.       find knn_minor data and compute average of distance for i 

26. if average to knn major data > average to knn minor datathen 

27.          /* data-i closer to minor nearest neighbors */ 

28. forj=1 to Ratio do 

29. create_synthetic_data(i, knn_minor, IKA,SI) 

30.              SI = SI + 1 

31.       else   

32.          /* data-i closer to major nearest neighbors */ 

33. forj=1 to Ratio do 

34. create_synthetic_data (i, knn_major, IKA,SI) 

35.              SI = SI + 1 

36.       end if 

37.   else 

38. for j=1 to Ratio do 

39.          /* use synthetic from minor nearest neighbors only */ 

40. create_synthetic_data (i, knn minor, IKA,SI) 

41.           SI = SI + 1 

42. end for 

43.   end if 

44. end if  

45. end for 

/* procedure to create synthetic data using randshuff method */ 

46. procedure create_synthetic_data(i, knn_data,IKA,SI) 

47. Arr_IVDM [] = Array IVDM value between original data and random 

result of data 

48. vrandshuff[] = Array for random shuffle result 

49. /* initialize order of attributes */ 

50. forh=1 to A do 

51. vrandshuff [h] = h 

52. end for 

53. random.shuffle(vrandshuff) /* shuffle order of attributes */ 

54. /* find candidate for cross over */ 

55. random instance of knn_data , call it R 

56. sum_ivdm = 0 

57. for h=1 to A do 

Arr_IVDM[h] = calculate IVDM(Arr_Dt[i][h], Arr_Dt[R][h]) 

sum_ivdm = sum_ivdm + Arr_IVDM[h] 

58. end for 

59. boundary_distance =  sum_ivdm 

60. boundary_attribute=  A 

61. /* initialize array synthetic data from original */ 

62. Copy data from Arr_Dt[i][] to Arr_Syn[SI][]  

63. w = 0 , vsumivdm = 0 

64. while w < 1 do 

65. for h  = 1 toboundary_attributedo 

66. vsumivdm = vsumivdm + Arr_IVDM[vrandshuff[h]] 

67. if sum_ivdm>boundary_distance then 

68.               w = w + 1 

69.           else 

70.               /* overridedata value with R neighbor value data */ 

71. Arr_Syn[SI][vrandshuff[h]] = Arr_Dt[R][vrandshuff[h]] 

72.           end if 

73.      end for 

74. end while 

75. /* check is keep correlated attribute or not */ 

76. if IKA=true then 

77. /* override correlated attributes with the original data */ 

78.  for o=1 to length(Arr_Corr_Atr[]) do 

79. Arr_Syn[SI][Arr_Corr_Atr[o]] = Arr_Dt[i][Arr_Corr_Atr[o]] 
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80.  end for 

81. end if 

82. /*override the class label using minor class label*/ 

83. Arr_Syn[SI][A_Class] = Arr_Dt[i][A_Class] 

84. Add_data(Arr_Syn[SI][] synthetic data) to DS 

85. end procedure 

 

 
 

Fig. 3. The calculation of the average IVDM values from original minor 

data to both of the k-nearest neighbors for "major" and "minor" classes 

 

Figure 4 shows that the average value of the five 

nearest neighbors minor class IVDM is smaller than the 

majority class, so data generating process will use set of 

the five nearest neighbors from the minor class as the 

basis of synthetic data generation. In other cases, if the 

average of IVDM resulting from major class is smaller 

than minor class, then the synthetic data generating 

process will use set of the five nearest neighbors from 

major class as the basis of synthetic data generation. 
 

 
 

Fig. 4. Synthetic data generation area 

 

Table II below illustrates the generation of synthetic 

data with 2 resource data, original data and random 

results from five nearest neighbor’s data (in this case 

minor3 is the random result). IVDM values between 

original data and minor3 data as follows: 0.1 for 

, 0.2 for , 0.2 

for , 0.1 for , 

and0 for  The boundary_distance 

can be computed as (  = 

0.3), while the boundary attribute value is calculated 

as( ). The Boundary distance and boundary 

attribute explained that synthetic data are built with 2 

possible boundaries, one is the  IVDM distance value 

of the original data and random data, and the second is 

the  number of attributes. It guarantees that the IVDM 

distance of synthetic data from its original data is not 

more than ½. 
 

 
 

Fig. 5. IVDM maximum boundary distance between the original  

and its synthetic data 

 

TABLE II 

PRELIMINARY DATA AS AN ILLUSTRATION OF THE RANDSHUFF 

A1 A2 A3 A4 A5 Label Notes 

18 

25 

>20JT 

1-3JT 

S1 

S2 

GOL1 

GOL2 

PROP1 

PROP1 

Minor 

Minor 

Minor3 

Origin 

 

RANDSHUFF randomizes the order of attributes. 

Those randoming results will be used to exchange values 

(crossover) between the attribute value of original data 

and the attribute value of one nearest neighbor. Suppose 

that random shuffle give results A4, A2, A1, A5 and A3. 

Then, A4 and A2 were selected because the sum of 

 and  reaches the distance boundary 

(<= 0.3) and also the number of attributes is 2 which 

reach attributes boundary (<= 2.5). We can generate a 

new synthetic data straightforward by only exchanging 

two pair of attribute values from original data and one of 

nearest neighbor random result as we see in Table III 
 

TABLE III 

NEW SYNTHETIC DATA RESULT BASED ON CROSS OVER METHOD 

FROM ORIGINAL DATA AND ONE OF NEAREST NEIGHBOR  

RANDOM RESULT 

A1 A2 A3 A4 A5 Label Notes 

18 

25 

25 

>20JT 

1-3JT 

>20JT 

S1 

S2 

S2 

GOL1 

GOL2 

GOL1 

PROP1 

PROP1 

PROP1 

Minor 

Minor 

Minor 

Minor3 

Origin 

Synthetic  

 

Meanwhile, to accommodate a "good data", it is 

necessary to set the Is_Kept_Correlated parameter 

attribute as true. That means that correlated attribute 

value was preserved by using the attribute value of the 

original data. For example, it was found that the attribute 

correlated is A4.  
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Therefore, synthetic data generation uses a 

combination of particular attribute values from the 

original training data (A1, A3, A5 and the class labels 

and attributes that correlate A4) and the rest of the 

attribute value from its random data (A2) (Table IV). 
 

TABLE IV 

NEW SYNTHETIC DATA WITH KEEPING CORRELATED ATTRIBUTE 

A1 A2 A3 A4 A5 Label Notes 

18 

25 

25 

>20JT 

1-3JT 

>20JT 

S1 

S2 

S2 

GOL1 

GOL2 

GOL2 

PROP1 

PROP1 

PROP1 

Minor 

Minor 

Minor 

Minor3 

Origin 

Synthetic  

IV. Experimental Setting and Results 

Experiment on RANDSHUFF were conducted on UCI 

data sets that are often used in the imbalance case 

literature (which contains at least one qualitative 

attribute). Our RANDSHUFF result was compared with 

other state of the art oversampling result(such as same 

portion oversampling, random oversampling, SMOTE 

IVDM, SMOTE IVDM Borderline, SMOTE IVDM 

ADASYN, and DataIM (DataboostIM without 

boosting)). 

In presenting the results in the experiment below, the 

notation of “V1” and “V2”was used to distinguish a 

different parameter input of RANDSHUFF algorithm. 

“V1” notation explains that RANDSHUFF was run using 

parameter IKA = false (without maintaining attributes are 

correlated). While, the “V2” notation explains that the 

RANDSHUFF was run using parameter IKA = true 

(correlated attributes are maintained).  

The additional parameter "minor" explains that the 

RANDSHUFF is executed using the parameters 

Who_NearestNeighbors = Minor_Only. "Borderline" or 

"ADASYN" additional parameters showed that the 

algorithm combined with Borderline or ADASYN 

concepts to select a minor data region would be 

processed. 

We use a distribution ratio of major and minor as 

50:50, which is based on [30], that distribution gives best 

accuracy in C4.5 algorithm. The nearest neighbors 

parameter k is set to 5, which is the most accepted value 

in most of the imbalance class literature[12].  

We also used C4.5 algorithm which is known as J48 in 

Weka as base classifier with "prune" and "unprune" 

settings. To determine that the attributes are correlated 

(Is_Keep_Correlated_Attributes parameter in our 

algorithm), the Correlation-based Feature Selection 

(CFS) of Weka was used. CFS is a method of selecting 

features by considering the correlation of each of the 

features with its attributes predictor[31]. 

IV.1. Data Set Description 

7 data sets obtained from the UCI were used to 

evaluate the performance of our proposed algorithm. For 

Vowel, and Primary-tumor data sets, one class was 

selected and the rest merged into a single class with the 

intention of making binary classes in order to comply 

with our research focus. In the binary imbalance case, the 

relationship between classes is well-defined: one is 

considered as the majority class, and the rest become 

minority classes[32].  

A full description and preprocessing training data that 

has been done can be seen in Tables V and VI below. 

To handle missing values and outlier values (beyond 

the limit) were found in several datasets above, then the 

data preprocessing was done and the missing values were 

replaced using mode and mean values. 

 
TABLE V 

DATA SET DESCRIPTION 

Data Maj/Min Qual/Quan Safe Border Noise 

Hepatitis 

Vowel 

Sick 

Abalone 

PrimaryTumor 

BreastCancer 

German 

123/32 

900/90 

3002/221 

689/42 

325/14 

201/85 

700/300 

13/6 

2/10 

22/6 

1/7 

17/0 

9/0 

13/7 

8 

90 

0 

0 

0 

27 

119 

21 

0 

167 

17 

3 

47 

140 

3 

0 

54 

25 

11 

11 

41 

 

TABLE VI 

CLASS LABEL AND PREPROCESS FOR EACH DATA SET 

Data Derived Class Preprocess 

Hepatitis 

Vowel 

Sick 

 

 

Abalone 

Primary Tumor 

Breast-Cancer 

German 

- 

hYd, non_hYd 

- 

 

 

- 

colon, non_colon 

- 

- 

Rep miss val 

- 

Del TBG attr due to high 

miss val, del some row with 

outlier value 

- 

Rep miss val 

Rep miss val 

- 

IV.2. Assessment Metrics 

In this paper, the performance of algorithms was 

evaluated by three parameters (Recall, Precision and F-

Measure).  

Those parameters usually was used in an imbalance 

problem with binary class [12].These three parameters 

are calculated using the confusion matrix as shown in 

Table VII.  
 

TABLE VII 

CONFUSION MATRIX 

Actual (+) Predicted (-) Predicted 

(+)  TP FN 

(-) FP TN 

 

We use the notation (+) to define the major classes 

and (-) for the minor class. Furthermore, 

Napierala[3]emphasized  that accuracy in minor class  is 

more important  than in major class. So, based on that 

literature, the above three parameters were evaluated for 

minor class only (-). 

As of F-Measure, typically the value of β = 1 [7], it 

showed that Recall and Precision occupy the same 

interests: 
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 (7) 

 

 (8) 

 

 
(9) 

IV.3. Experimental Results 

Table VIII gives average result values of minor class 

performance on Recall, Precision and F-Measure 

parameters. Table IX provides an explanation about the 

best three summary result of Recall. Table X provides an 

explanation about the best three summary result of 

Precision. Table XI provides an explanation about the 

best three summary results of F-Measure performance. 

Table XII provides an average performance increase 

compared to base classifier using C4.5 algorithm. 

IV.4. Analysis and Discussions 

Regarding the experimental results in Section 4, the 

following analysis results were obtained: 

1) In vowel data,90 training data in minor class are in a 

safe position. This makes Borderline and ADASYN 

useless, since there are no synthetic data to develop. 

 

TABLE VIII 

AVERAGE RESULTS OF MINOR CLASS 

Data Algorithms 
Prune Results Unprune Results 

Recall (-) Precision (-) F-Measure (-) Recall (-) Precision (-) F-Measure (-) 

Hepatitis 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

31.18% 

56.00% 

52.67% 

69.34%2 

45.19% 

45.99% 

49.99% 

61.20% 

66.93%3 

73.33%1 

64.93% 

61.46% 

58.66% 

56.13% 

45.20% 

57.33% 

66.13% 

41.60% 

58.00% 

36.08% 

57.22% 

51.94% 

56.47% 

51.26% 

49.59% 

55.19% 

46.29% 

49.06% 

44.15% 

62.82%1 

57.43% 

53.63% 

50.41% 

39.41% 

57.00% 

61.56%2 

38.66% 

60.42%3 

32.57% 

50.73% 

50.07% 

56.83% 

42.99% 

43.44% 

49.04% 

49.72% 

52.78% 

52.58% 

57.78%2 

54.78% 

52.38% 

49.21% 

40.21% 

51.89% 

59.95%1 

37.91% 

55.15%3 

39.32% 

56.00% 

52.67% 

67.87%2 

54.53% 

55.33% 

51.33% 

58.00% 

66.00%3 

72.26%1 

62.26% 

60.66% 

58.66% 

56.26% 

50.00% 

57.60% 

64.26% 

44.53% 

56.26% 

41.91% 

58.69% 

52.90% 

57.99% 

65.59%2 

63.39% 

68.28%1 

45.36% 

49.54% 

48.08% 

62.34% 

58.99% 

54.01% 

53.90% 

45.67% 

60.90% 

63.99%3 

44.59% 

61.50% 

37.04% 

51.88% 

50.18% 

57.71%2 

54.20% 

52.76% 

53.55% 

48.43% 

54.29% 

55.21% 

56.93%3 

55.69% 

53.16% 

50.40% 

45.30% 

54.10% 

59.80%1 

41.80% 

54.30% 

Vowel 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

72.20% 

80.00% 

77.78% 

94.22%1 

73.11% 

72.20% 

72.20% 

84.66%2 

72.22% 

72.22% 

84.00%3 

72.22% 

72.22% 

72.67% 

72.22% 

72.22% 

74.67% 

72.22% 

72.22% 

88.09%2 

89.92%1 

88.09%2 

57.79% 

75.33% 

88.09%2 

88.09%2 

69.14% 

88.09%2 

88.09%2 

67.65% 

88.09%2 

88.09%2 

82.09% 

88.09%2 

88.09%2 

82.21%3 

88.09%2 

88.09%2 

72.83% 

81.34%1 

78.85%2 

69.91% 

70.92% 

72.83% 

72.83% 

72.28% 

72.83% 

72.83% 

71.42% 

72.83% 

72.83% 

72.84% 

72.83% 

72.83% 

74.08%3 

72.83% 

72.83% 

66.66% 

80.00% 

76.89% 

94.22%1 

74.00% 

66.66% 

66.66% 

84.88%2 

66.66% 

66.66% 

84.44%3 

66.66% 

66.66% 

72.23% 

66.66% 

66.66% 

74.67% 

66.66% 

66.66% 

90.00%1 

89.92%2 

88.90%3 

60.14% 

77.68% 

90.00%1 

90.00%1 

68.86% 

90.00%1 

90.00%1 

67.17% 

90.00%1 

90.00%1 

83.48% 

90.00%1 

90.00%1 

83.47% 

90.00%1 

90.00%1 

70.67% 

81.34%1 

78.19%2 

71.61% 

72.26% 

70.67% 

70.67% 

72.54% 

70.67% 

70.67% 

71.33% 

70.67% 

70.67% 

73.26% 

70.67% 

70.67% 

74.48%3 

70.67% 

70.67% 

Sick 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

90.07% 

92.82% 

92.51% 

92.85% 

86.64% 

87.76% 

87.19% 

91.77% 

85.65% 

93.57% 

93.85% 

90.80% 

91.14%1 

89.11%3 

89.52%2 

67.10% 

85.13% 

88.78% 

84.69% 

57.10% 

62.65% 

54.75% 

77.70% 

81.83% 

90.51%3 

90.84%2 

90.85%1 

77.63% 

85.51% 

87.93% 

85.51% 

70.12% 

72.22% 

68.90% 

84.78% 

85.85% 

90.08% 

90.55% 

90.61% 

94.58%1 

91.01% 

91.87% 

90.37% 

89.18% 

88.47% 

91.53% 

92.05% 

90.89% 

90.70%1 

90.51%2 

90.46%3 

61.37% 

84.39% 

85.30% 

84.24% 

54.02% 

63.93% 

53.14% 

77.18% 

79.60% 

90.26%3 

90.39%1 

90.36%2 

74.26% 

87.37% 

88.15% 

86.94% 

67.05% 

74.10% 

67.04% 

83.70% 

84.56% 
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Data Algorithms 
Prune Results Unprune Results 

Recall (-) Precision (-) F-Measure (-) Recall (-) Precision (-) F-Measure (-) 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

95.04%3 

93.94% 

89.60% 

94.23% 

95.56%1 

87.52% 

95.12%2 

75.50% 

82.55% 

83.16% 

80.89% 

78.70% 

82.94% 

78.19% 

84.02% 

87.65% 

86.01% 

86.79% 

86.18% 

84.97% 

85.67% 

91.41% 

92.43%3 

89.59% 

92.60%2 

91.58% 

87.81% 

91.59% 

75.85% 

82.37% 

83.37% 

80.54% 

79.14% 

81.35% 

79.27% 

82.69% 

86.72% 

86.06% 

85.81% 

84.67% 

84.07% 

84.76% 

Abalone 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

14.17% 

25.00% 

33.16% 

34.33% 

55.00%1 

30.83% 

54.00%2 

25.83% 

5.17% 

27.33% 

41.16%3 

16.33% 

22.76% 

24.83% 

15.83% 

32.33% 

40.50% 

16.83% 

32.66% 

38.30%1 

18.38% 

29.88%3 

23.57% 

20.43% 

21.74% 

19.70% 

18.48% 

8.79% 

18.60% 

29.56% 

24.37% 

22.76% 

19.35% 

22.96% 

24.39% 

30.60%2 

25.28% 

25.28% 

18.50% 

21.39% 

29.18% 

26.14% 

29.44%3 

24.76% 

28.51% 

20.40% 

6.25% 

21.22% 

31.91%2 

18.71% 

25.78% 

20.96% 

17.50% 

26.63% 

32.48%1 

19.69% 

27.37% 

14.17% 

25.83% 

30.33% 

34.83% 

53.16%1 

31.16% 

51.33%2 

27.16% 

8.17% 

28.33% 

40.66% 

17.33% 

32.99% 

27.33% 

14.33% 

33.00% 

41.50%3 

16.83% 

33.66% 

24.16% 

19.20% 

29.69%1 

21.65% 

19.68% 

20.43% 

19.94% 

18.71% 

12.29% 

17.85% 

27.43%3 

23.80% 

22.65% 

20.20% 

19.29% 

22.57% 

29.09%2 

22.80% 

26.15% 

16.19% 

21.17% 

28.04% 

25.08% 

28.32%3 

24.15% 

27.57% 

20.29% 

9.42% 

20.98% 

31.08%2 

18.79% 

26.16% 

22.35% 

15.68% 

25.81% 

32.37%1 

18.72% 

27.63% 

Primary 

Tumor 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

0.00% 

24.00% 

22.00% 

66.80%1 

0.00% 

0.00% 

0.00% 

32.40% 

30.00% 

22.40% 

34.00% 

28.00% 

47.60%2 

32.80% 

32.00% 

26.40% 

29.60% 

40.00%3 

39.60% 

0.00% 

11.67%3 

11.02% 

8.49% 

0.00% 

0.00% 

0.00% 

4.34% 

18.43%2 

3.08% 

4.84% 

4.75% 

6.56% 

4.22% 

18.63%1 

3.44% 

4.07% 

8.23% 

4.90% 

0.00% 

13.97% 

13.08% 

14.53%3 

0.00% 

0.00% 

0.00% 

7.23% 

18.56%2 

4.95% 

8.09% 

7.61% 

10.97% 

7.04% 

18.95%1 

5.70% 

6.77% 

12.56% 

8.26% 

0.00% 

24.00% 

24.00% 

38.40%1 

0.00% 

0.00% 

0.00% 

21.20% 

26.00% 

20.80% 

30.00% 

25.60% 

34.40%3 

23.60% 

28.00% 

21.60% 

23.60% 

36.00%2 

32.00% 

0.00% 

17.00%3 

16.08% 

5.74% 

0.00% 

0.00% 

0.00% 

2.82% 

17.09%2 

2.44% 

3.64% 

4.30% 

4.92% 

3.40% 

17.49%1 

3.02% 

2.98% 

7.29% 

3.90% 

0.00% 

17.77%1 

17.17%2 

9.41% 

0.00% 

0.00% 

0.00% 

4.72% 

16.50%3 

4.13% 

6.22% 

6.90% 

8.09% 

5.52% 

17.17%2 

4.89% 

5.03% 

10.99% 

6.55% 

Breast 

Cancer 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

25.58% 

43.85% 

41.44% 

44.38% 

45.58% 

41.63% 

41.35% 

39.90% 

58.45%1 

53.53%2 

42.85% 

44.19% 

47.48% 

42.96% 

51.68%3 

50.21% 

41.63% 

51.15% 

50.67% 

66.67%1 

43.97% 

44.74% 

51.00%3 

51.25%2 

39.63% 

43.24% 

46.92% 

34.85% 

35.53% 

44.48% 

31.18% 

32.89% 

49.41% 

36.92% 

36.18% 

46.15% 

35.53% 

36.57% 

35.90% 

43.00% 

41.24% 

45.31%2 

47.04%1 

39.15% 

40.32% 

41.16% 

43.09% 

41.94% 

42.58% 

35.75% 

38.26% 

44.07%3 

42.38% 

41.51% 

42.13% 

41.26% 

41.77% 

42.60% 

47.60% 

46.94% 

54.44% 

50.58% 

43.37% 

43.37% 

54.77% 

58.49%1 

55.03%2 

53.02% 

49.32% 

52.98% 

51.82% 

51.49% 

54.06% 

50.65% 

50.55% 

55.02%3 

47.04%1 

42.23% 

42.82% 

43.33% 

46.20%3 

41.76% 

46.43%2 

42.91% 

39.63% 

38.71% 

42.28% 

36.73% 

37.32% 

45.80% 

40.61% 

38.87% 

41.43% 

38.67% 

39.45% 

43.68% 

44.40% 

44.03% 

47.39%3 

47.75%1 

41.61% 

42.44% 

47.47%2 

46.53% 

45.01% 

46.51% 

41.33% 

43.38% 

45.80% 

44.92% 

44.81% 

45.09% 

43.44% 

45.66% 

German 

C4.5 

Same Portion Oversampling 

Random Oversampling 

DataIM 

SMOTE IVDM 

SMOTE IVDM Borderline 

SMOTE IVDM ADASYN 

43.33% 

30.33% 

54.00% 

61.20% 

54.06% 

57.73% 

56.93% 

52.58%2 

55.05%1 

47.88% 

48.76% 

48.78% 

48.48% 

47.31% 

47.27% 

38.77% 

50.52% 

54.13%3 

50.99% 

52.42% 

51.48% 

48.33% 

42.33% 

49.60% 

60.53%2 

51.73% 

53.80% 

53.53% 

45.94% 

48.54%2 

46.05% 

44.65% 

45.24% 

46.32% 

44.08% 

46.88% 

45.04% 

47.55% 

51.28% 

48.12% 

49.61% 

48.22% 
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Data Algorithms 
Prune Results Unprune Results 

Recall (-) Precision (-) F-Measure (-) Recall (-) Precision (-) F-Measure (-) 

Randshuff V1 

Randshuff V1 Borderline 

Randshuff V1 ADASYN 

Randshuff V1 Minor 

Randshuff V1 Minor Borderline 

Randshuff V1 Minor ADASYN 

Randshuff V2 

Randshuff V2 Borderline 

Randshuff V2 ADASYN 

Randshuff V2 Minor 

Randshuff V2 Minor Borderline 

Randshuff V2 Minor ADASYN 

62.20% 

72.20%1 

65.40%2 

59.86% 

63.93% 

61.73% 

60.86% 

65.26%3 

63.93% 

59.53% 

60.46% 

58.60% 

49.40%3 

45.74% 

44.44% 

48.43% 

46.25% 

44.88% 

48.17% 

45.94% 

45.49% 

47.98% 

45.14% 

43.89% 

54.88%2 

55.84%1 

52.79% 

53.36% 

53.49% 

51.85% 

53.62% 

53.80% 

52.98% 

52.92% 

51.53% 

50.00% 

59.06% 

64.80%1 

57.80% 

55.40% 

59.40%3 

58.06% 

56.86% 

58.80% 

57.26% 

57.00% 

55.80% 

55.80% 

46.39%3 

64.80%1 

42.03% 

45.94% 

45.75% 

44.02% 

45.50% 

43.97% 

43.83% 

46.14% 

44.32% 

44.23% 

51.82%2 

52.36%1 

48.50% 

50.10% 

51.54%3 

49.91% 

50.43% 

50.15% 

49.47% 

50.79% 

49.24% 

49.17% 

  

 

TABLE IX 

BEST THREE RECALL (-) ACHIEVEMENTS SUMMARY 

Data 
 Prune   Unprune  

First Second Third First Second Third 

Hepatitis V1 ADASYN  DataIM V1 Borderline V1 ADASYN  DataIM V1 Borderline 

Vowel DataIM  V1 V1 Minor DataIM  V1 V1 Minor 

Sick V2 Minor V2 Minor ADASYN V1 Minor ADASYN DataIM V2 ADASYN V2 

Abalone 
SMOTE IVDM SMOTE IVDM 

ADASYN 

V1 Minor SMOTE IVDM SMOTE IVDM 

ADASYN 

V2 Minor 

Primary Tumor DataIM  V1 Minor ADASYN V2 Minor Borderline DataIM  V2 Minor Borderline V1 Minor ADASYN 

Breast Cancer V1 Borderline  V1 ADASYN V2 Borderline V1 Borderline V1 ADASYN V2 Minor ADASYN 

German V1 Borderline   V1 ADASYN V2 Borderline V1 Borderline DataIM V1 Minor Borderline 

 

 

TABLE X 

BEST THREE PRECISION (-) ACHIEVEMENTS SUMMARY 

Data 
 Prune   Unprune  

First Second Third First Second Third 

Hepatitis V1 Minor  V2 Minor V2 Minor ADASYN 
SMOTE IVDM 

ADASYN  
SMOTE IVDM V2 Minor 

Vowel Oversampling  C4.5 V2 Minor C4.5  
Same Portion 

Oversampling 

Random 

Oversampling 

Sick C4.5 
Random 

Oversampling 

Same Portion 

Oversampling 
C4.5 

Same Portion 

Oversampling 

Random 

Oversampling 

Abalone C4.5 V2 Minor 
Random 

Oversampling 

Random 

Oversampling 
V2 Minor V1 Minor 

Primary Tumor V2 Borderline  V1 Borderline 
Same Portion 

Oversampling 
V2 Borderline  V1 Borderline 

Same Portion 

Oversampling 

Breast Cancer C4.5  SMOTE IVDM DataIM C4.5  
SMOTE IVDM 

ADASYN 
SMOTE IVDM 

German 
Same Portion 

Oversampling  
C4.5 V1 V1 Borderline 

Same Portion 

Oversampling 
V1 

 

 

TABLE XI 

BEST THREE F-MEASURE (-) ACHIEVEMENTS SUMMARY 

Data 
 Prune   Unprune  

First Second Third First Second Third 

Hepatitis V2 Minor V1 Minor V2 Minor ADASYN V2 Minor DataIM V1 Minor 

Vowel 
Same Portion 

Oversampling 

Random 

Oversampling 
V2 Minor 

Same Portion 

Oversampling 

Random 

Oversampling 
V2 Minor 

Sick 
Random 

Oversampling 

Same Portion 

Oversampling 
C4.5 

Same Portion 

Oversampling 

Random 

Oversampling 
C4.5 

Abalone V2 Minor V1 Minor SMOTE IVDM V2 Minor V1 Minor SMOTE IVDM 

Primary Tumor V2 Borderline V1 Borderline DataIM 
Same Portion 

Oversampling 

Random 

Oversampling ,  

V2 Borderline 

V1 Borderline 

Breast Cancer SMOTE IVDM  DataIM V2 SMOTE IVDM V1 DataIM 

German V1 Borderline V1 DataIM V1 Borderline V1 V1 Minor Borderline 

 

 

2) Data with additional synthetic data provide better 

results of Recall parameter compared to sampling 

using original data. This is indicated by the 

oversampling with the addition of synthetic data, to 

achieve the best 3 in all test data. 

3) All oversampling methods (with and without 

additional synthetic data)may cause a reduction of 

Precision value as seen in Table XII, which is 

indicated by the negative value. 

4) For the F-Measure results, the use of original and 

additional synthetic training data equally provides 

impartial results. It is indicated for hepatitis, abalone, 

breast cancer and German data, oversampling with 

additional synthetic training data method provides 
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better value than oversampling with original data. On 

the contrary, for the vowel and sick data, 

oversampling with original training data provides 

better value than oversampling with additional 

synthetic training data. 

5) In certain data, as seen in Tables IX, X and XI, the 

generation of synthetic training data only in "Border" 

or "Noise" areas implemented on V1 or V2, seem to 

improve accuracy. Improvement of Recall occurs in 

hepatitis, primary tumor, breast cancer and German 

data. Improvement of Precision and F-Measure 

occurs in primary tumor data. 

6) In certain data, the use of the parameter 

Who_NearestNeighbors = Minor_Only consistently 

deliver better results on Recall, Precision and F-

Measure than Average_on_MajorMinor. V1 Minor 

provided better result than V1 on hepatitis, sick, 

abalone, and primary tumor. V2 Minor provided 

better results than V2 on hepatitis and abalone data. 

7) As of "prune" and "unprune" performance of C4.5 

algorithm, the experimental results of Recall and F-

Measure in Table XII showed that "prune" 

performance gives a better average increase than 

"unprune". 

 

 
TABLE XII 

AVERAGE PERFORMANCE INCREASE (COMPARED WITH BASE CLASSIFIER) 

Algorithms 
 Prune   Unprune  

Recall (-) Precision (-) F-Measure (-) Recall (-) Precision (-) F-Measure (-) 

Same Portion Oversampling 10.78 -1.07
1
 6.07 9.31 3.76

1
 6.75

2
 

Random Oversampling 13.86 -1.40
2
 8.03

2
 13.86

3
 -1.39 8.03

1
 

DataIM 26.66
1
 -8.53 6.7 18.94

1
 -6.41 4.57 

SMOTE IVDM 11.86 -5.81 4.19 9.924 -0.14 4.76 

SMOTE IVDM Borderline 10.19 -5.38 4.56 5.41 -1.37 2.73 

SMOTE IVDM ADASYN 12.16 -4.95 4.30 8.36 1.89
2
 3.52 

V1 17.35 -11.60 2.60 11.60 -8.67 1.09 

V1 Borderline 16.30 -9.32 3.43 8.37 -0.35 2.74 

V1 ADASYN 17.62 -10.90 2.99 10.27 -5.24 1.98 

V1 Minor 20.59
2
 -5.34 7.48

3
 15.13

2
 -1.97 5.87 

V1 Minor Borderline 14.34 -5.57 4.49 8.02 -0.08 3.54 

V1 Minor ADASYN 18.42 -6.94 5.50 11.19 -1.57 4.19 

V2 15.38 -5.24 5.40 10.48 -0.73 4.25 

V2 Borderline 13.61 -5.39 4.87 6.69 0.09 3.60 

V2 ADASYN 17.16 -5.34 5.82 9.49 -0.003 4.41 

V2 Minor 18.73
3
 -3.08

3
 8.13

1
 13.27 0.93

3
 6.79

3
 

V2 Minor Borderline 13.32 -7.00 3.31 6.45 -1.53 2.03 

V2 Minor ADASYN 18.62 -5.07 6.21 10.61 0.68 4.86 

Average 15.94 -5.99 5.22 10.41 -1.23 4.21 

 

V. Conclusion 

From the experimental results, the author concluded as 

follows: 

1) Oversampling with additional synthetic data is able to 

overcome the problem of “lack” of information on 

training data (as indicated by increase of Recall and 

F-Measure values). However, the drawback of 

oversampling with additional synthetic data is a 

reduction of Precision value. 

2) RANDSHUFF provides an alternative in the 

development of an oversampling technique with 

additional synthetic data that have been tested on a 

qualitative dominant data type. RANDSHUFF 

provides competitive performance compared to other 

"state of the art" imbalance algorithms like SMOTE 

IVDM, Oversampling, and DataIM (indicated for 

better achievement of Recall and F-Measure values). 

Flexibility of RANDSHUFF can be set using the 

input parameters such as the type of neighbor class 

and maintenance of attribute values are correlated. 

3) To overcome three main issues in imbalance 

problems (overlap, small disjuncts and outliers), 

Randshuff can be combined with Borderline or 

ADASYN concepts. The use of “neighborhood from 

minor class only” parameter provides consistent 

improvement for 3 parameters on some dataset. 

Limitations of this study include the following: 

1) Performance evaluation of this proposed algorithm 

has been accepted only in the domain of qualitative 

data on 7 public data sets. Different results may occur 

in other data sets. 

2) The smaller number of attributes could lead to 

smaller variations of synthetic data, or in other words, 

data are likely to be the same as the original data. 

A Future development of this study could be: 

1) To combine our RANDSHUFF algorithm with an 

ensemble environment like Boosting and Bagging, 

such as the DataboostIM, SMOTE-Boosting or 

SMOTE-Bagging methods. 

2) To test RANDSHUFF algorithm in multiclass 

imbalance problems which contain more complex 

situations because of the complexity of the decision 

boundary of different classes[12]. 
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